

Mark Scheme (Results)

January 2024

Pearson Edexcel International Advanced Subsidiary Level In Chemistry (WCH11) Paper 01 Structure, Bonding and Introduction to Organic Chemistry

Section A

Question Number	Answer	Mark
1(a)	The only correct answer is B (element Q, 1521)	(1)
	A is incorrect because it has 7 electrons in its outer shell	
	C is incorrect because it has 1 electron in its outer shell	
	D is incorrect because it has 2 electrons in its outer shell	

Question Number	Answer	Mark
1(b)	The only correct answer is A (element P, 1251)	(1)
	B is incorrect because it would not form a compound as it is an inert gas.	
	C is incorrect because it would not form a covalent compound	
	D is incorrect because it would not form a covalent compound	

Question Number	Answer	Mark
1(c)	The only correct answer is D (element S, 590)	(1)
	A is incorrect because it would form a covalent compound	
	B is incorrect because it would not form a compound as it is an inert gas.	
	C is incorrect because it would from a compound with the formula YF	

Question Number	Answer	Mark
1(d)	The only correct answer is C (element R, 419)	(1)
	A is incorrect because it has a smaller atomic radius	
	B is incorrect because it has a smaller atomic radius	
	D is incorrect because it has a smaller atomic radius	

Question Number	Answer	Mark
2	The only correct answer is C	(1)
	1s $2s$ $2p$	
	$\uparrow \downarrow \qquad \uparrow \downarrow \qquad \uparrow \qquad \uparrow$	
	A is incorrect because the 2s orbital should contain 2 electrons	
	B is incorrect the 2s orbital should contain 2 electrons and each 2p orbital should have one electron before any are doubled up	
	D is incorrect because each 2p orbital should have one electron before any are doubled up	

Question Number	Answer	Mark
3	The only correct answer is A (a molecule of ethene, ¹² C ₂ ¹ H ₄)	(1)
	B is incorrect because it contains 16 neutrons	
	C is incorrect because it contains 16 neutrons	
	D is incorrect because it contains 16 neutrons	

Question Number	Answer	Mark
4	The only correct answer is D (16, 20)	(1)
	A is incorrect because both elements are in the p block	
	B is incorrect because both elements are in the p block	
	C is incorrect because both elements are in the p block	

Question Number	Answer	Mark
5	The only correct answer is D (NH ₃ (g))	(1)
	A is incorrect because it is not a polar molecule	
	B is incorrect because it is not a polar molecule	
	C is incorrect because it is not a polar molecule	

Question Number	Answer	Mark
6	The only correct answer is B(NO ₂)	(1)
	$m{A}$ is incorrect because it contains 47% N	
	C is incorrect because it contains 64% N	
	$m{D}$ is incorrect because it contains 37% N	

Question Number	Answer	Mark
7	The only correct answer is B (2.65 g)	(1)
	A is incorrect because they have used the atomic numbers to calculate the M_r	
	C is incorrect because they have used 500 cm ³ not 250 cm ³ .	
	D is incorrect because they have used 1000 cm ³ not 250 cm ³ .	

Question Number	Answer	Mark
8	The only correct answer is C (11.34 g cm ⁻³)	(1)
	$m{A}$ is incorrect because they have divided the $A_{ m r}$ by the number of moles	
	B is incorrect they have used the atomic number not the mass number	
	D is incorrect because this is the number of moles	

Question Number	Answer	Mark
9	The only correct answer is D (sodium, metallic, giant)	(1)
	A is incorrect because copper(II) sulfate is an ionic giant substance	
	B is incorrect because graphene is a covalent giant substance	
	C is incorrect because iodine has covalent bonds	

Question Number	Answer	
10	The only correct answer is A (1.167 g)	(1)
	B is incorrect because they have used a 1:2 ratio not 1:1.	
	$oldsymbol{C}$ is incorrect because they have used the wrong concentration or volume of the barium chloride	
	D is incorrect because they have used the wrong concentration or volume of the barium chloride and used a 1:2 ratio not 1:1.	

Question Number	Answer	Mark
11	The only correct answer is D (magnesium iodide)	
	$m{A}$ is incorrect because Na^+ has a smaller charge than Mg^{2+} and Cl^- is smaller than I^-	
	B is incorrect because Na^+ has a smaller charge than Mg^{2+}	
	$m{C}$ is incorrect because Cl^- is smaller than I^-	

Question Number	Answer	
12	The only correct answer is D (1.42×10^{21})	(1)
	A is incorrect because they have used iodine molecules not atoms and not multiplied by 10	
	B is incorrect because they have not multiplied by 10	
	C is incorrect because they have used iodine molecules not atoms	

Question Number	Answer	Mark
13	The only correct answer is C (0.00004%)	(1)
	A is not correct because the answer shows the percentage equal to ppm	
	B is not correct because the answer shows the ppm divided by 100	
	D is not correct because the correct answer has been divided by 100	

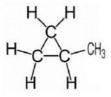
Question Number	Answer	Mark
14	The only correct answer is C (5)	(1)
	A is not correct because there are 5 isomers	
	B is not correct because there are 5 isomers	
	D is not correct because there are 5 isomers	

Question Number	Answer	Mark
15	The only correct answer is B (it decolourises bromine water)	(1)
	A is not correct because it is an addition polymer	
	$oldsymbol{C}$ is not correct because it is non-biodegradable	
	$m{D}$ is not correct because it has the empirical formula CH_2	

Question Number	Answer	Mark
16	The only correct answer is A (butene, pentane and propene)	(1)
	B is not correct because there are too many hydrogen atoms in the products	
	C is not correct because there are too few carbon atoms in the products	
	D is not correct because there are too many carbon atoms in the products	

Question Number	Answer	Mark
17	The only correct answer is C (water, carbon dioxide and sulfur dioxide)	(1)
	A is not correct because no hydrogen can be produced	
	B is not correct because no hydrogen chloride can be produced	
	D is not correct because no hydrogen can be produced	

TOTAL FOR SECTION A = 20 MARKS


Section B

Question Number	Answer	Additional Guidance	Mark
18(a)	An answer that makes reference to the following points: • A H ₃ C H cis-/Z- but-2-ene • B H ₃ C H trans-/E- but-2-ene	Allow structural/skeletal/displayed or any combination. Both name and structure required for each mark A and B can be swapped over If both A and B structures are correct but names wrong score 1(and vice versa) Ignore lack of hyphens	(4)
	• C $ \begin{array}{cccccccccccccccccccccccccccccccccc$	Either structure allowed Allow C ₂ H ₅ CHCH ₂ Allow 2-methylprop-1-ene, methylpropene	

• D

cyclobutane

methylcyclopropane

(1) Either structure allowed
If both C and D structures are correct but names
wrong score 1(and vice versa)

Only penalise missing Hs once if displayed or structural given Allow cyclicbutane

If no other mark is awarded score 1 mark for any 2 correct structures or names in correct position

Question Number	Answer		Additional Guidance	Mark
18(b)	An answer that makes reference to the following points: A carbon-carbon double bond consists of a sigma bond and a pi bond. Porblad Por			(4)
	• diagram showing electron density of σ bond	(1)		
	• diagram showing electron density of π bond	(1)	Only one pi bond needs to be labelled	
			Can be shown by 2 separate diagrams All the examples on the left score M1 and M2 If both diagrams are correct but names reversed score 1	
	Both needed		Do not award electron rings, single lines or contour lines	

• σ bond head/end on overlap of (p) orbitals	(1)	Allow overlap along the axis between the atoms/ nuclei Allow axial overlap
• π bond sideways overlap of (p) orbitals	(1)	Allow parallel overlap Allow lateral overlap Ignore above and below/horizontal

Question Number	Answer	Additional Guidance	Mark
18(c)	An answer that makes reference to the following points:		(2)
	• restricted/ no rotation about the double bond/C=C (1)	Allow no or restricted free rotation Ignore lack of twisting/bending/movement	
	• (two) different groups on each carbon (of the double bond)/the carbons (of the double bond) (1)	Allow different elements/atoms/functional groups Allow an explanation or diagram of the positions of the CH ₃ and H. Ignore just the position of the CH ₃ Do not award different compounds/molecules	

(Total for Question 18 = 10 marks)

Question Number			A	nswer						Additional Guidance	Mark
19(a)	A description that makes reference to the following points:						(2)				
	• two peaks at 78 and	d 80							(1)	If there are more than 2 peaks score 0	
	• peak at 78, 3 x high	her th	an peak	at 80					(1)	Allow within 1small square	
	Relative abundance	50	76	78	mass	80 / charg	8 ge ratio	84		If the peaks are wrong but the lower mass/ charge one is 3x higher than the other, M2 can be scored as a TE. Ignore any labels on the peaks	

Question Number	Answer		Additional Guidance	Mark
19(b)(i)	An answer that makes reference to the following points:			(2)
	cl—cı → cı + ·cı		Both arrows can come from the same side of the bond	
	• diagram showing curly half-arrows forming 2 free radicals	(1)		
	• uv (radiation / light) or sunlight	(1)	Ignore just light	

Question Number	Answer		Additional Guidance	Mark
19(b)(ii)	An answer that makes reference to the following points:			(2)
	 homolytic: each atom gets one electron/ the electron pair splits evenly 	(1)	Allow equal splitting of the electrons (in the bond)	
	• free radical: species with an unpaired electron	(1)	Allow atom/ element Allow lone electron Ignore free electron	

Question Number	Answer	Additional Guidance	Mark
19(b)(iii)	An answer that makes reference to the following point:		(1)
	 multiple substitutions can occur/ more than one (organic) product 	Allow more products formed//more waste products Allow termination products Allow side products/reactions Allow further reactions	
		Ignore chain reaction Ignore poor yield/atom economy Ignore forms impurities Ignore references to HCl being formed/toxic	

Question Number	Answer	Additional Guidance	Mark
19(c)(i)	 An answer that makes reference to the following points: 1 dipole on H–Cl 2 curly arrow from H–Cl bond to Clδ– 3 curly arrow from double bond to H(δ+) 4 correct carbocation intermediate 5 curly arrow from lone pair on Cl 	H CH3	
	 6 arrow to C+ on intermediate 7 charge on chloride ion All 7 marking points score 4 marks, 5/6 points score 3 marks, 3/4 points score 2, 2 points score 1 mark 	Arrows must start from the covalent bond or lone pair From the H—Cl bond it must go to the Cl or beyond. From the C=C bond it must go to the H or in the space. From the lone pair on the Cl it must go to the C+ on the intermediate. If wrong alkene used just penalise 1 marking point. If primary carbocation is formed just penalise marking point 4 If half curly arrows used penalise 1 marking point If HBr/HI used penalise 1 marking point	

Question Number	Answer	Additional Guidance	Mark
19(c)(ii)	An answer that makes reference to the following points:		(2)
	• (the formation of 1-chloropropane goes via a) primary carbocation (1)	Do not award 1-chloropropane is a primary carbocation or 2-chloropropane is a secondary carbocation but only penalise once,	
	• (which is) less stable than the secondary carbocation (formed when of 2-chloropropane is produced)	Allow the correct comparison between a tertiary and primary or secondary carbocation for 1 mark Allow reverse argument	

(Total for Question 19 = 13 marks)

Question Number	Answer		Additional Guidance	Mark
20(a)(i)	An answer that makes reference to the following points:		Example of calculation	(4)
	• calculation of the % abundance of the third isotope	(1)	100- 78.99-10.00 = 11.01(%)	
	• substitute equation	(1)	$24.32 = (24 \times 78.99) + (25 \times 10) + (y \times 11.01)$ 100	
	• calculation of the mass of the 3 rd isotope	(1)	$y = \frac{2432 - (24 \times 78.99) - (25 \times 10)}{11.01}$	
			y = 25.998	
	• answer to 2 SF only	(1)	mass number = 26	
			Correct answer with some correct working beyond M1 scores 4	

Question Number	Answer	Additional Guidance	Mark
20(a)(ii)	An answer that makes reference to the following points:		(1)
	same number of protons	Allow same atomic number/ same number of electrons/ same electronic configuration/ same reactivity/chemical properties Ignore they are the same element	
	and	and	
	different number of neutrons	Allow different number of nucleons/ different mass number/different (atomic) mass Do not award relative atomic mass	

Question Number	Answer	Additional Guidance	Mark
20(a)(iii)	An answer that makes reference to the following point:		(1)
	²⁴ Mg and lowest mass or lowest m/z ratio (so deflected more by the magnetic field)	Allow ²⁴ Mg is lightest Allow ²⁴ Mg ⁺ Ignore just the lowest mass	

Question Number	Answer	Additional Guidance	Mark
20(b)(i)	An answer that makes reference to the following points:	Example of diagrams Allow any combination/position of dots and crosses or just dots or just crosses.	(2)
	 correct structure of Mg ion and charge (1) correct structure of O ion and charge (1) 	Mg 2+	
		Accept Mg with charge but no electrons and/or no circle Penalise lack of charges once only	

Question Number	Answer		Additional Guidance	Mark
20(b)(ii)	An answer that makes reference to the following points:			(2)
	 oxide/ O²⁻ smaller than sulfate/ SO₄²⁻ stronger (electrostatic) attraction between the (Mg²⁺ and O²⁻) ions 	(1) (1)	Allow just the oxide is smaller or vice versa Do not award comparison with sulfur or sulfide Allow stronger ionic bond Allow more energy required to break the ionic bond Allow reverse argument Ignore reference to lattice energy Ignore reference to distortion/polarisation Any reference to intermolecular forces /covalent bond/molecular structure score 0	

Question Number	Answer		Additional Guidance	Mark
20(c)	An answer that makes reference to the following points:			(2)
	 Mg: has delocalised electrons (that are free to move) when solid and liquid 	(1)	Allow has electrons that are free to move	
	MgO: ions are only free to move when liquid	(1)	Allow ions are not free to move when solid Ignore ions/electrons carrying charge	

Question Number	Answer	Additional Guidance	Mark
20(d)(i)	Example of equation $Mg(s) + H_2SO_4(aq) \longrightarrow MgSO_4(aq) + H_2(g)$	$Mg(s) + 2H^+(aq) \longrightarrow Mg^{2+}(aq) + H_2(g)$	(2)
	• correct balanced equation (1)	Allow multiples Allow ionic equation	
	• correct state symbols (1)		
		M2 dependent on M1 or having the correct species in an unbalanced equation	

Question Number	Answer		Additional Guidance	Mark
20(d)(ii)	An answer that makes reference to the following points:			(2)
	• bubbles (of gas)/ fizzing/ effervescence	(1)	Ignore just hydrogen/gas produced	
	• Mg disappears/ disintegrates /gets smaller /dissolves	(1)	Allow solid disappears Ignore Mg floats	
	OR		ignore mg noms	
	mixture gets warmer/ temperature increase		Ignore just exothermic/ temperature changes	
			Do not award white ppt	

Question Number	Answer	Additional Guidance	Mark
20(e)(i)		Example of calculation	(1)
	 number of moles of sulfuric acid 	$30 \times 0.5 \div 1000 = 0.015/1.5 \times 10^{-2} \text{ (mol)}$	
		Do not award 1 SF.	

Question Number	Answer	Additional Guidance	Mark
20(e)(ii)	• mass of Mg	Example of calculation $0.015/1.5 \times 10^{-2} \times 24.3 = 0.3645 \text{ (g)}$ Ignore SF except 1SF	(1)
		TE on (e)(i).	

Question Number	Answer	Additional Guidance	Mark
20(e)(iii)	An answer that makes reference to the following point:		(1)
	 to ensure all the sulfuric acid is used up/ sulfuric acid is limiting 	Allow all the sulfuric acid is neutralised Allow Mg is easy to remove from the reaction mixture. Ignore so that the Mg is in excess	

Question Number	Answer	Additional Guidance	Mark
20(e)(iv)	An answer that refers to the following point:		(1)
	• (gravity) filtration	Ignore any heating after filtration	
	• (gravity) filtration	Ignore any neating after filtration	

Question Number	Answer		Additional Guidance	Mark
20(e)(v)		E	Example of calculation	(2)
	• maximum mass of MgSO ₄ ·7H ₂ O	(1) 0	$0.015/1.5 \times 10^{-2} \text{ (mol)} \times 246.4 = 3.696 \text{ g}$	
	• calculation of % yield	(1) 2	$2.78 \div 3.696 \times 100 = 75.216 \%$	
		I	Ignore SF except 1SF	
		Т	TE on (e)(i)	
		C	OR	
	• moles of of MgSO ₄ ·7H ₂ O	(1) 2	$2.78 \div 246.4 = 0.011282 \text{ (mol)}$	
	 calculation of % yield 	(1) 0	$0.011282 / 0.015 \times 100 = 75.216 \%$	
		I	Ignore SF except 1SF	
		Т	TE on (e)(i)	
			TE on calculated molar mass of MgSO ₄ ·7H ₂ O as long as the % is less than 100%	
		C	Correct answer with some working scores 2	

(Total for Question 20 = 22 marks)

Question Number	Answer	Additional Guidance	Mark
21(a)		Example of calculation	(4)
	• M1 % (of hydrogen) (1)	100 - 17.48 - 77.67 = 4.85 (%)	
	 M2 calculation of moles (1) M3 divide by the lowest number of moles to get 	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	 empirical formula (1) M4 calculation of M_r of empirical formula (1) 	$1 \times 10.8 + 3 \times 16 + 3 \times 1 = 61.8 \text{ (g mol}^{-1})$ If they only use 2 elements, they can score one mark for M2 and M3 being correct for both B and O	
	 M1 % (of hydrogen) (1) M2 multiplication of % by M_r 	Or B	
	 (row 2) (1) M3 calculation of ratio number (row 3) (1) 	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
	• M4 divide by the lowest number to get empirical formula (row 4) (1)		

Question Number	Answer	Additional Guidance	Mark
21(b)(i)	An answer that makes reference to the following points:	Example of diagram Allow any combination of dots and crosses or just dots or just crosses.	(3)
	• correct electrons around B (1)	H:O:B:O:H	
	• correct electrons around the oxygens (1)		
	• correct electrons round the hydrogens (1)	H	
		Ignore how the lone pair electrons are arranged in oxygen. The marks are only awarded if the bond and number of bonds is correct between the correct two atoms.	
		Anything ionic score 0	

Question Number	Answer		Additional Guidance	Mark
21(b)(ii)	An answer that makes reference to the following points:			(2)
	• bond angle 120°	(1)	Ignore trigonal planar/any shape even if incorrect	
	3 (bonding) pairs of electrons (round B) adopt a position of minimum repulsion	(1)	Allow maximum separation of 3 electron pairs No TE on incorrect bond angle for M2 Do not award bonds for electrons Ignore electron pairs have equal repulsion Allow TE on structure in (b)(i) If structure in (b)(i) has 3 bonding and 1 lone pair of electrons M1 bond angle of 107° (allow 106-108) M2 lone pairs repel more than bonding pairs (and adopt a position of minimum repulsion/maximum separation) Any ionic structure from (b)(i) will score 0	

Question Number	Answer		Additional Guidance	Mark
22(a)			Example of calculation	(5)
	• conversion of dm³ to m³	(1)	$1 \div 1000 = 0.0010 / 1.0 \times 10^{-3} (\text{m}^3)$	
	conversion of temperature to K	(1)	273 + 20 = 293	
	rearrangement of ideal gas equation	(1)	$n = pV \over RT$	
	evaluation to give number of moles	(1)	$\frac{101000 \times 1.0 \times 10^{-3}}{8.31 \times 293} = 0.04148 / 4.148 \times 10^{-2} $ (mol)	
	calculation of molar mass	(1)	$\frac{0.656}{0.04148} = 15.81 = 16 \text{ (g mol}^{-1}\text{)}$	
			Ignore SF except 1SF Allow TE throughout Allow conversion of Pa to kPa and use of dm³ Do not award a TE on a molar mass less than 2 Correct answer with some working scores 5	

Alternative metho • conversion of any 1000 (e.g. 24 in the	volume in dm ³ to m ³ by dividing by	$24 \div 1000 = 0.024 \text{ (m}^3\text{)}$	
• conversion of tem	perature to K	273 + 20 = 293	
• rearrangement of	deal gas equation	$n = \underline{pV}$ RT	
• evaluation to give	number of moles	$\frac{101000 \times 0.024}{8.31 \times 293} = 0.99556 \text{ (mol)}$	
calculation of mass dm³ as shown) and calculation of mol	s in volume chosen in M1 (eg 24 ar mass	$0.656 \times 24 = 15.744 \text{ (g)}$ and $15.744 \div 0.99556 \text{ (mol)} = 15.81 \text{ (g mol}^{-1})$	

Question Number	Answer	Additional Guidance	Mark
22(b)	An answer that makes reference to the following point: • methane/CH ₄	TE on a hydrocarbon that fits the molar mass from (a)	(1)

(Total for Question 22 = 6 marks)

TOTAL FOR SECTION B = 60 MARKS TOTAL FOR PAPER = 80 MARKS